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lYlethods of correcting the systematic errors in electron-density maps due to using finite series of 
structure factors are discussed. Random errors in the maps are caused by experimental and com- 
putational rounding-off errors and by errors in ~he correction for finite series. Expressions are 
derived for the standard deviations of these ramdom errors, which have a Gaussian probability 
distribution. It is shown how statistical significance tests can be used in the comparison of different 
bond-lengths, etc. These methods are illustrated by a detailed examination of the accuracy of the 
dibenzyl structure, which confirms Jeffrey's conclusions on shortened central bonds. 

Other topics include discussions of the shape of the atomic peaks in maps and the variation of 
errors with limiting reciprocal radii. 
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1. In troduct ion  

I t  was not until about thirteen years after W. H. Bragg, 
in 1915, had shown that  the electron density in a crystal 
could be represented by a Fourier ~eries of structure 
factors that  the experimental technique was sufficiently 
advanced to permit of the application of the method, 
except in simple one-dimensional cases. I t  was then 
soon recognized (Bragg & West, 1930) that  electron- 
density maps produced in this way differ from the true 
electron density in much the same way as an optical 
microscopic image differs from the object from which it 
is formed: (i) peaks in the maps (corresponding to 
atoms in the crystal) are surrounded by diffraction 
'ripples'; and (ii) atoms which are closer together than 
about 0.6h/2 sin 0max. cannot be resolved as separate 
peaks. Although, owing to confusion of thought, it has 
sometimes been suggested that  the resolving power as 
expressed above sets a limit to the accuracy with which 
the position of any atom can be determined, the con- 
dition (ii) does not, in fact, impose any serious limitation 
on crystal analysis since, by the use of three-dimensional 
methods, a peak separation of more than 1 A. can be 
ensured, and with the usual experimental conditions 
0.6h/2 sin 0max. is considerably less than this. 

The effect of the diffraction ripples in displacing 
peaks from their true positions was first examined by 
Booth (1945a, 1946a, 1947a), who at the same time 
studied the effects of experimental inaccuracies on peak 
positions. Booth gave methods by which the errors in a 
structure could be estimated, and his conclusions con- 
firmed the possibility of obtaining the order of accuracy 
of atomic positions ( _+ 0.01 to + 0.05A.) claimed by 
various workers from the consistency of their results. 

The methods suggested by Booth depend in part on 
assumptions which are not generally valid or on in- 
formation not readily available; the present study, 
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while following the same general mode of analysis, 
a t tempts  to avoid these difficulties and to extend the 
scope of Booth's discussion. 

As practical problems of accuracy at the present 
time arise most acutely in connexion with the deter- 
mination of bond lengths in molecular substances, it  
seems desirable to apply the general methods obtained 
to a structure of this class. In the present case dibenzyl 
has been chosen because there are two sets of experi- 
mental data  (Robertson, 1935; Jeffrey, 1947) and 
because of the interest of the results, and in the belief 
tha t  so far as can be judged it is a typical organic 
structure; for our purpose it also has the advantage of 
having all seven (carbon) atoms in the asymmetric unit 
as nearly as possible equivalent in their electron con- 
tent. 

The whole of the following analysis is based on the 
assumption tha t  the errors are small in comparison 
with the inter-atomic distances, iNo account has there- 
fore been taken of 'homometr ic  sets '  (Patterson, 1944) 
of structures having the same amplitudes but with 
different phase relationships; the large errors due to this 
possibility are not likely to arise in practice and in any 
case their elimination is a mat ter  of physics and 
chemistry rather than of mathematics. 

A preliminary account of this work has been pub- 
lished already (Cox & Cruickshank, 1948). 

2. Plan of  this paper 

The valid interpretation of fine detail in electron- 
density maps depends, fundamentally, on the proper 
use of statistical assessments of significance on the 
basis of the estimated errors (a mat ter  which is quite 
separate from the use of statistical methods to estimate 
the errors). Since without a proper appreciation of this 
point detailed s tudy of the various possible errors is 
almost valueless, it is discussed first in § 3. 

In  comparison with the true electron density, given 
by 

1 Z I FI cos(0- ), (2"1) p(x, y, .z) =-~ 3 

electron-density maps are subject to three sources of 
errors, namely: 

(i) errors in the experimental I F I values; 
(ii) effects of termination of the series at a finite 

(hkl) value; and 
(iii) computational errors. 
Par t  of Booth's discussion of (i) and (ii) was based on 

the assumption of a particular shape of atomic density 
distribution. This is examined with especial reference to 
dibenzyl in an Appendix and the conclusion is reached 
tha t  the analysis cannot be reliably based on such an 
assumption. Though in the development from Booth's 
work this discussion is prior to the remainder of this 
paper, it has been given as an Appendix so as not to 
interrupt  the main sequence of the present approach. 

After a preliminary discussion of finite-series effects 
in § 5, various methods of t reatment  are considered in 

detail in §56-10; the semi-analytical method of §8 
gives results in agreement with the diffraction effects 
observed by Bragg & West (1930) and by Robertson 
& Woodward (1940). 

Formulae for assessing random errors are derived in 
§ 11 and applied to dibenzyl in § 12, where comparisons 
are made between the random errors arising in two- and 
three-dimensional syntheses. Computational errors, 
which can be assessed by methods similar to those used 
for experimental errors, are examined in §13; the 
effects of two- or three-figure accuracy in computation 
are dealt with, and the results of a complete analysis of 
the errors in computing the dibenzyl structure with 
Beevers & Lipson strips (1936) are given. 

§ 14 examines the merits and defects of the analyses 
developed earlier in the paper, and the methods of 
assessing and correcting errors are applied in detail to 
dibenzyl in § 15. § 16 contains a brief discussion of the 
nature of the variation in errors likely to arise when 
structure analyses are carried out by different methods 
or by the same method to different limits, and finally 
§ 17 summarizes the results of the paper and gives a set 
of rules for assessing the accuracy of any structure and 
for drawing significant conclusions about the results. 

The reader primarily interested in assessing the 
accuracy of a given structure will probably find tha t  
§§ 3, 5, 10, 11 and 17 contain all tha t  he requires. 

3. Application of  statistical significance tests 
to the results of  structure analysis 

Before any justifiable conclusions can be drawn from 
comparisons of the results of structure analyses, it is 
necessary to have an estimate of the errors in each case. 
This is especially important in the solution of questions 
relating to bond lengths in molecular substances, and 
unless a definite procedure is followed there are possi- 
bilities either tha t  conclusions may be based on in- 
sufficient evidence or even tha t  real differences may be 
dismissed as due to experimental errors. 

We shall for the moment presuppose 6ur general 
result tha t  in electron-density maps the systematic 
errors (due to finite series) can be corrected for (except 
in certain details mentioned in §14), and tha t  the 
random errors (due to experimental and computational 
errors and to the method of correction for finite series) 
can be estimated. The probability distribution for these 
random errors is normal (or Gaussian), i.e. the proba- 
bility that  the error lies between x and x + dx is 

1 
(27r~2)------- ~ e -~212tr2 dx, (3" 1) 

where cr is the standard deviation of the error and is the 
quantity given by the formulae in succeeding parts of 
this paper. 

With a distribution of this kind we can never be 
absolutely certain that the actual error is less than any 
finite quantity. (Apart from physico-chemical evidence 
setting an upper limit, this is not strictly true as there is 
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an upper limit of error dependent in our case on the 
number of structure factors, but  this number is suffi- 
ciently large not to affect the argument.) We have, 
therefore, to accept some standard less than certitude 
as a reasonable basis of argument. 

An example will pose the problem more explicitly: 
a bond length A, having a standard deviation CA, is 
determined as greater than another bond length B, 
standard deviation eB, by an amount 31. Is there a real 
difference between A and B or might the observed 
difference easily occur by chance due to random errors ? 
Common statistical practice (e.g. Brownlee, 1947) 
suggests the following procedure. Let P represent the 
probability tha t  A could be observed as greater than B 
by chance although really equal to B; then 

if P/> 5 % $l is not significant; 
if 5 % > P > 1 %  31 is of possible significance; and 
if P ~< 1 %  31 is significant. 

A further level of P ~< 0 .1% is sometimes used; 31 then 
being said to be highly significant. The choice of these 
(or any other) levels is entirely arbitrary,  but the above 
set is likely to be suitable for crystallographic purposes. 

The following table gives 31 in terms of ¢ = (~4 + ~)½ 
for the various values of P for a Gaussian distribution 
(if $I/o'= (~/2) x, 

p = l _  1 (Xe-t2dt=½_½erfx; 
~/ . Jo 

by this definition of P the values include only the area 
under one tail of the probability distribution curve). 

P = 5 % 31 = 1-645 ¢, 
P = 1% 31 = 2.327 ~, 
P = O. 1% 31 = 3-090 ~. 

Thus for all practical purposes a difference of more than 
three times the standard deviation may be taken as 
real. 

Until  recently, in the absence of a quanti tat ive treat- 
ment  of the problem, means have been lacking to 
assess errors in structural analyses, and the frequently 
occurring statements of the type 'We regard the bond 
lengths given in this paper as reliable to _+ 0.03A.' have 
been based on judgements which, while perhaps not 
without justification, have lacked a common basis on 
which comparison might reliably be made. I t  is much to 
be hoped tha t  in all precision analyses authors will 
adopt a definite convention of giving standard devia- 
tions of interatomic distances and will use numerically 
specified levels of significance in comparing them. 

4. Summary of  previous work on dibenzyl 

As the data  in the application of the theory of errors 
elaborated in this paper are taken chiefly from work on 
dibenzyl it will be convenient here to summarize 
previous work, in so far as it bears on our discussion. 

The crystal structure of dibenzyl, 

Cell5. CH2. CH 2 . Cell5, 
was first examined in detail by Robertson (1935), who 

found a unit cell of dimensions a--12.77 A., b = 6.12A., 
c = 7.70A.;/? = 116 °, containing two centre-symmetric 
molecules related by the space-group symmetry  
P2z/a. He measured photometrically the absolute 
intefisities of about 150 planes, and found the atomic 
co-ordinates by Fourier projections on the principal 
planes. 

Jeffrey (1947) measured the intensities from 746 
planes visually, and these, after conversion to an 
absolute scale by comparison with Robertson's results, 
were used in three-dimensional Fourier syntheses to 
determine the atomic co-ordinates. The bond lengths 
found by Jeffrey are shown in Fig. 1, in which the mole- 
cule is projected parallel to the c axis. The results of 
particular interest are the lengths of the three acyclic 
bonds, which are considerably shorter than the normal 
C-C single-bond length of 1.54A. In conjunction with 
results from the crystal-structure analysis of geranyl- 
amine hydrochloride (Jeffrey, 1945) these are taken as 
indicating special structural properties associated with 
the system of two unsaturated groups separated by 
three single carbon bonds. From the internal con- 
sistency of the molecular dimensions Jeffrey concluded 
tha t  the bond lengths in dibenzyl could be regarded as 
reliable to ± 0.01 A. 

~'59~.~ C' /. 

,~/ ~,  

c' ~ "'~",--~.39 c, 
C [ ~ ~  " CT Projection of a 

/ , /-o ~,1 
C ; ~ c , -  Ib 

c,, 
Fig. l. Jeffrey's dibenzyl bond lengths. 

5. Effects o f  finite series 

Booth (1946a) has shown tha t  the whole summation 

can be regarded as composed of M parts, each of which 
is completely in phase at one atom, however many terms 
there are in the summation. The position of one peak is 
therefore affected by disturbances from the other 
( M -  1) peaks. This idea of the allocation of the electron 
density to M parts is the key to the t reatment  of finite 
series, but  it entails certain approximations which 
must be noted before we consider the character of the 
disturbances. A similar mode of analysis is adopted for 
hypothetical models in structure-factor calculations. 

First, we must say what we mean by an atomic 
position in bond-length investigations. Atomic posi- 
tions are defined to be those points where, in the 
electron density at the absolute zero of temperature,  

OP--OP--OP=o' } 
Ox Oy Oz (5"1) 

and 02p 02p and a2p Ox2, Oy ~ ~ are negative. 
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This definition applies alike to postulated structures 
and electron densities in a crystal. However, no crystal 
is at zero temperature, and consequently the maxima of 
the electron density at temperatures other than zero 
are not necessarily at the same points as the atomic 
positions. 

Calculations on postulated structures introduce a 
further complication. Strictly, the postulated structure 
should include allowances for asymmetry of electron 
distributions, electrons in bonds, etc., but for" con- 
venience it is taken as consisting of M distinct atoms, 
each of which is spherically symmetrical.. This con- 
ventional process of splitting a structure into M parts 
will not, in general, give the original density when the 
M parts are superposed; in particular it does not 
necessarily ensure, even at absolute zero temperature, 
that  the atomic-density distributions will be zero at 
inter-atomic-centre distances, i.e. the electron density 
resulting from the superposition of M distinct atoms 
does not necessarily have its maxima at the atomic 
positions. I f  this occurs at zero temperature, the peak 
shifts are spurious and are due to the conventional 
procedure. At zero temperature this approximation, 
ff carefully carried out, will give substantially correct 
densities at the atomic centres and zero densities at 
great distances from any atoms. I t  will be in error at 
intermediate positions. At non-zero temperatures, 
part, at any rate, of the peak shifts on superposition are 
due to thermal motion, as we discussed above. 

In the ensuing discussion on the correction of finite 
series we shall assume that  the peak shifts on super- 
position at zero temperature are negligible, and that  at 
other temperatures the peak shifts on superposition are 
the same as those in the actual electron density due to 
thermal motion. 

Though the effect is automatically included in the 
various treatments for finite series, it is informative to 
calculate the displacement of the maxima of the 
electron density due to thermal motion for the dibenzyl 
CH group discussed in the Appendix. Using the data 
from Table A2 we find for one group that  at 

r= 1.386A. 8p/ar= -0 .358 e.A. -4, 

and at r =  1.540A. Op/Sr= -0.196e.A.  -a. 

Hence, since a~p/a#= -80.2, two groups 1.386 A. apart 
will have their maxima shifted inwards 

2 x 0 .358 /80 .2  = 0.009A., 

and the distance between two groups 1.540A. apart will 
apparently be shortened by 2x0.196/80.2=0.005A. 
The thermal vibration in dibenzyl is large, so that  
perhaps these results can be regarded as indicating an 
upper limit to the effect. 

The problem of correction of finite series is to 
eliminate the disturbances upon one peak from the 
other ( M - I ) .  We shall examine three methods of 
calculating these disturbances, which, since the series is 

finite, have a periodic or rippling character .  T h e s e  
methods are: 

(i) semi-analytically from t h e f  curve (§§6, 7, 8); 
(ii) f~ synthesis (§9); 
(iii) ~'c correction synthesis (§ 10). 

6. Semi-analytical calculation of rippling 

To calculate the rippling due to observing only within 
the reciprocal sphere of radius so we require to in- 
tegrate /'s0 " 2r:sr 

p(r)= J ds. (6.1) o f(s) 4 . :  sm 
2z:sr 

Booth (1946 a, 1947 a), by taldng f(s) = Nexp. [-- rPs2/p] 
(A 2.1), was able to calculate the maximum slopes in p(r) 
and consequently to set an upper limit to the displace- 
ment of one peak by another. We shall comment in the 
Appendix on the use of such a scattering-factor curve, 
and conclude that it is not generally applicable. 

$ $, 

Fig. 2. Full line, ]o(8); broken 1me, f # ) .  

We can gain some insight into the effect of finite 
series by dividing up the area under t he f  curve into two 
parts (see Fig. 2). Let the dividing line be 

re(8) = a + b s ,  (6.2) 

such that  it touches re(S) at the limiting reciprocM 
radius so. The whole integration of re(s) is to be per- 
formed in two parts, zone A numerically and zone B 
analytically; since the integration is in three dimensions 
zone B will generally make the larger contribution to 
p(r), since at large s the ordinates of A are small. 

We require to integrate 

IB= f : °(a +bs) 4n: sin2r:sr2r:sr ds. (6-3) 

Putting the ordinate .at limiting reciprocal radius 

fo =a+bso, 
and the slope at so f~ = b, we find 

21rat 4J 21#r a 

+ sin 2,So r ( 21#r a ). 

With f ~ -  0 this is identical with the result obtained by 
James (1948, equation (8)). 

The slope of I B is 

' l , _2:0  i pB(r)=cos2~8:,~(3fo +SOL) n3:j 

2 '  



D, W. J. C R U I C K S H A N K  69 

I t  is apparent tha t  PB(r) is approximately periodic 
with period So r and tha t  its amplitude steadily de. 
creases with increasing r. For large r 

pB(r ) ~_ _Sofo COS 21rSor. (6"6) 
7[ r 2 

The complete p(r) is obtained by adding pzt(r), calcu- 
lated numerically, to pB(r). 

The displacement dr of one peak by the disturbance 
from another is then given by 

~ g p  3 r ,  ( 6 . 7 )  - p ' ( r )  = --~ 

where 3~p/~r ~ is the central curvature of the peak whose 
displacement is being investigated. Clearly the dis- 
placement is along the line of centres. 

7. Application of the semi-analytical m e t h o d  

We can illustrate the general principles of the method 
by considering two atoms separated by a distance of 
1.54A., and also a benzene ring, using the data from 
dibenzyl. 

¢.Af 3 
-~'014., 
+@12- 
+@10- 
+&08- 
+006- 
+0~4- 
÷002 O" 

-0.01- 

--N: 
-C'08- 
-0"10. 
-ff12- 

,~ . ! , . ,. . 

Fig. 3. (a) I~ for 2 sin 8= 1'65 obtained by numerical in- 
tegration. (b) /~ for 2 sin 8-- 1.65 calculated from equation 
(6.4). 

There is no sudden termination of the series in di- 
benzyl, so tha t  the results obtained may not be wholly 
applicable to the dibenzyl structure. I t  is also difficult 
to estimate what the equivalent s o is: we shall assume 
a limiting value of 2 s i n 0 =  1.65. The other relevant 
data  for dibenzyl are 

mean side of hexagon 1.375A.; ] 

central peak ~2p/ar~ -34 .5 ;  I (7.1) 
fo at 2s in0- -  1.65 0.317; 

f~ at  2 s i n 0 = l . 6 5  -1 .164.  

Fig. 3 shows pB(r) calculated from (6.4). The value of 
pA(r) for 2 s i n 0 =  1.65 obtained by numerical integra- 
tion is also plotted, and it is clear tha t  pA(r) influences 
only neighbouring peaks. 

For the diatomic system with d =  1.540A. we have 
the following slopes at  one peak due to the tail of the 
other peak 

-0 .284e .A.  -4 due to pB(r), 
--0"155 e.A. -4 due to pA(r). 

Total - 0.439 e.A. -4. 

Hence one peak is shifted 0.439/34.5-0.0127 A. in- 
wards. The two peaks will therefore be observed as 

1.5146A. apart,  an appreciable reduction in distance. 
Without detailed knowledge of the scattering factors 
and limiting reciprocal radii for many compounds one 
cannot assert a general rule tha t  C-C single bonds will 
be observed short, but  the example serves to illustrate 
the large effect tha t  finite series can have. 

Referring to :Fig. 4 the symmetry of the system shows 
that the benzene ring will expand or contract as a whole. 
It will be sufficient to calculate the movement of peak A 
along the diameter AD due to the disturbances from 
the other atoms considered in turn. 

Density changes at A: 

Atoms B and 2, (each) 0.064 ] 
C and E (each) 0.020} Due to PB 
D --0.012] 
B and 2' (each) 0.070 Due to Pa 

Total 0"296 e.A. -a 

Slope changes at  A : 
Slope Peak shift outwards 
at  A along A D  

Atoms B and 2, {each) 0.086 0.0012) 
C and E (each) --0.037 --0.0009} Due to PB 
D --0"039 --0"0011) 
B and 2' (each) --0.346 -0 .0050 Due to Pa 

Total - 0.0105A. 

B C 

F E 

Fig. 4. Dimensions of benzene ring in dibenzyl. 

We have obtained these shifts on the assumption 
tha t  the true side of the ring was 1-375A., but this was 
the observed size (with diffraction); the true size is thus 
the observed size minus the corrections calculated 
above. As the corrections are small compared with the 
period of the diffraction waves we need not recalculate 
the changes for the corrected positions. Making these 
corrections we obtain the mean side of hexagon equal 
to 1.385A. 

The mean observed peak height in the ring was 6.00 
e.A. -3. I t  should have been 6 .00 -0 .30=5 .70  e.A.-L 
This alteration in the peak density due to the diffrac- 
tion effect is considerable, and must be properly taken 
into account when discussing the possibilities of de- 
tecting real density differences between various atoms 
of a molecule. 

8. The semi-analytical method in two dimensions 

The analysis can easily be extended to diffraction 
effects in plane projections. The Fourier integral for the 
representation of a circularly symmetrical atom in two 
dimensions is ;o 

p(r) = 2nsf(s) Jo(2rrsr) ds. (8.1) 
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Settingfc(s)=a+bs, we get 

as o b f ~'so" 
p-B(r)=-~--Jz(2nsor)+ 4--~-r3J o X~Jo(x)dx. (8.2) 

In  discussing the diffraction effects in NaC1 Bragg 
& West (1930) pointed out the analogy with optical 
diffraction rings. They arrived at  an expression 

e~o (8.3) p(r) =--~ Jz(27rsor), 

which may  be obtained from (8.2) by putt ing b = 0. This 
expression gives the positions of the maxima and 

70- \ 

60 - ~\ 
50- 

p(r) 40. 

30- 

20. 

10- 
\,k, 04 

_100 ] 0~1 (~2 ~ 3 " ~ g 5  0"~, 0"7 " ~ - 1 ~ 0  1:1 1:2A. 

Fig. 5. Electron density for chlorine. Full line, Bragg & West 
synthesis. Broken line, density 6alculated from equation 
18.9.). 

e.A. -2 

= p (r) 30 

2O 

o' 0:1 0:z di"-~.' ~s o6 ~7 ~8 ~9 I~A. 
r 

Fig. 6. Electron density for sodium. Full line, Bragg & West 
synthesis. Broken line, density calculated from equation 
(8.2). 

minima of the diffraction pat tern almost correctly, as 
the maxima and minima of Jz(2nsr)/r are close to the 

1 f2rtsor 
maxima and minima of ~/0~ x2Jo(x) dx. 

Bragg & West calculated the electron densities of 
sodium and chlorine for a synthesis, based on the 
Hartree atom models, terminated at  a particular 
reciprocal radius. The density plots they gave in Fig. 8 
of their paper are reproduced here in Figs. 5 and 6, 
which also show the densities calculated from (8.2) 
using the data  on f values given by Bragg & West. 
(They s t a t e t h a t  0max. was 30 °, A=0.615A., but  their 
results and tables are consistent with 0max. = 42½°.) The 
densities calculated from (8.2) closely follow those ob- 
tained in the synthesis, the difference decreasing as r 
increases, indicating a monotonic transform of zone A. 

Fig. 7 shows the density of platinum given by 
Robertson & Woodward (1940), and tha t  calculated 
from (8.2) using 2 s i n 0 = l - 7 ,  A=l .54A. ,  fo=26, 
r e -  - 30.8. In this case, from the second zero outwards, 

the agreement between the curves is complete within 
the limits of graphical error. 

9. f~ synthesis 

As an alternative to the numerical integration of the 
f curve, the characteristic diffraction effects can be 
obtained by  evaluating a synthesis, whose coefficients 
are the scattering factors for one atom, having the same 
terms as the F synthesis. The superposition of M f 
syntheses, the origin of each being at  an atomic peak, 
will then give the required density changes and peak 
shifts. 

e.A.-~ 
180- 
1 6 0 '  

140 .  , 
\ 

120- \ 

100- 
p(r) 80- 

60- ~ ~ ~ .  
40- 
20. 

. .. ~ 0 ' 8  ~ _ _  ~ 

- I  0 ,  i , • , .,, , , , . • , , , 0:2 o~ ~ \ ~  1.2 1.4 1.6 1.8 ~ 2.2 2.4A. 
r 

Fig. 7. Electron density for platinum. Full line, Robertson & 
Woodward synthesis. Broken line, density calculated from 
equation (8.2). 

C~ .109 ° 28' 

Origin 1"9379 A. C2 

Fig. 8. Positions of central peaks in dibeazyl. 

If  the synthesis is terminated sharply at  some 
limiting reciprocal radius, each f synthesis will be 
nearly spherically symmetrical and it will be sufficient 
to evaluate the densities along one line. However, if the 
synthesis is terminated because the reflexions become 
too weak to stand out from the general background 
scattering, so tha t  the cessation of observations is 
irregular with unobserved planes even from small 
Bragg angles, then the calculations are laborious as the 
synthesis is not symmetrical. The density plots then 
obtained show ripples which do not have the periodicity 
and damping of the usual diffraction effects. In  these 
cases the F~ syntheses discussed in the next section are 
preferable. 

10.  F~ s y n t h e s i s  

Booth (1946a) has suggested that ,  when the 2' 0 syn. 
theses have been finished, a synthesis of F c should be 
evaluated, containing the same terms as the Fo syn- 
theses, each F~ having been calculated for the peak 
positions given by the last Fo synthesis. Owing to the 
diffraction effects, this F~ synthesis will have peaks 
slightly displaced from the original positions. Since the 
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peaks of the F o synthesis are shown on a map with 
diffraction effects, their real positions, without diffrac- 
tion, are obtained by reversing the displacements ob- 
tained in the Fc synthesis. This mode of correcting for 
finite series is justifiable if 

(i) the shifts are small compared with the periodicity 
of the diffraction waves, and 

(ii) there is good agreement between Fo and Fc for all 
planes. 

The first condition will be fulfilled almost invariably, 
though a further second-order correction can be made 
by computing an Fc synthesis based on the corrected 
positions, and by then adjusting these positions by the 
difference between the peaks of this second F c synthesis 
and the F o synthesis. The experimental errors will 
rarely be so small as to make this additional refinement 
worthwhile. 

I f  condition (ii) is not fulfilled, the amplitudes of the 
diffraction waves will be wrong, and consequently the 
corrections will be in error. As an example of a case 
where care is needed in applying the method we 
instance geranylamine hydrochloride (Jeffrey, 1945). 
The experimental syntheses seem to show a consider- 
able variation in the thermal motion between the polar 
and non-polar ends of the molecule. If  an Fc synthesis 
(based on identical spherically symmetrical carbon 
atoms) shows tha t  this broadening of the contours is not 
due to some geometrical fluke, and thus tha t  the 
thermal motion differences are real, the diffraction 
effects will vary  considerably down the chain and 
corrections based on identical atoms will not be 
accurate. For the method to be applied with confidence 
in such complex cases it may  be necessary to vary  the 
temperature factor for each atom, and possibly even to 
allow for asymmetry  of thermal motion. 

As in equation (A 3.2), we can extend these correction 
syntheses by constructing a synthesis whose first terms 
are Fo, and whose last terms are Fc, where no observa- 
tions were possible. This gives a density 

4-oo :t:oo 4-oo 

p(x, y, z) = Z Fo cos ( 0 -  a) + Z Z Z F~ cos ( 0 -  ~) 
3 ~h +k ±1 (10.1) 

= ~ Fo cos (0-- a) +Pcalc.(x, y, z) -- ~ Fc cos (0-- a) 
3 3 

=pcab.(x, y, z) + ~ (Fo - F~) cos (O- a). (10"2) 
3 

The peaks of this synthesis will lie between those 
found by the method above and the peaks of the Fo 
synthesis, since the correction displacement is in- 
versely proportional to the central curvature and this is 
greater for the infinite series of (10.1) than for either of 
the finite series. 

Bonding electrons and hydrogen atoms have their 
biggest proportionate effect on structure factors at 
small reciprocal radii, so tha t  they do not affect the 
extrapolat ionofthe F values very much. Consequently, 
if the assessment of temperature factors has been care- 
fully made, we may regard (10.2) as giving the most 

faithful general representation of the electron density 
we can obtain, though it  does not give quite the most 
accurate atomic positions. As Fankuchen (1947) h a s  
pointed out, owing to its lack of diffraction effects it will 
give a good opportunity of detecting hydrogen atoms 
and of studying electron distributions in regions of low 
density, though in all such studies the effects of experi- 
mental errors must be very carefully considered. 

11. The effect of random errors 

If  the F values were accurate, the electron density 
represented by an incomplete series would be 

p( ,y,Z)=vZ I F I cos (11"1) 

The first differentials are of the type 

ap I h 
Ox- V ~  2rr-[ (11.2) 

and the second differentials are 

02p 1 hk a au=  Z34, h lflcos(0- ). (11.3) 

We will use Booth's (1946b) convenient notation 

Op and a2P --Aak, etc. 
-Ux =An Ox Oy 

If  the experimental I F ]  values are in error by 
amounts AF, then we have for the errors in the in- 
complete series 

" l  

A(p) 

1 
A(Ah)= --V ~ 21rh-AFsin (11.5) 

1 ~hk 
A(Ahk) = - ~ ]  4~ -~AFcos(O--a). (11.6) 

v 3  

Consider the evaluation of A(Aa) as typical. The indi- 
vidual AF's  are in principle unknowable, so tha t  
A(Ah) cannot be evaluated exactly. We have therefore 
to resort to statistical methods, for which we require a 
probability distribution of AF, and we must be satisfied 
by estimating from this the probability distribution of 
A(Ah). 

I t  is apparent  tha t  a probability distribution of AF 
estimated on a basis of the difference between two 
equally reliable sets of experimental ] F [  values will 
underestimate the true AF, since no allowance will be 
made for systematic errors common to both sets of 
observations; while the true AF will be overestimated on 
a basis of the difference between a set of experimental 
F values and a set of F values calculated for a postu- 

M 

lated structure (Fcab.(hkl) =~-,fr cos Or ; see also § 5). 
1 

We shall adopt the lat ter  procedure for the following 
reasons: 

(i) In  general, there will not be two sets of experi- 
mental values for comparison. 
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(ii) We shall be on the safe side in estimating the 
experimental errors from the difference between ob- 
• served and calculated values. 

(iii) The corrections required for finite series are 
estimated by methods involving calculated F ' s  for a 
postulated structure. These corrections may  them- 
selves be in error, for which some estimate must be 
made; usually in fact the total  random error will be 
correctly estimated by taking AS" as the difference 

• between observed and calculatedvalues. The matter  is 
further discussed in § 14. 

The statistical analysis which follows is based on 
well-known theorems given by Whittaker & Robinson 
(1944)2 The relevant theorems are: 

(A) When (in a large class of cases) a deviation e is 
constituted by the summation of a very large number of 
independent deviations el, e~., ..., en the probability 
tha t  e lies between x and x + dx is 

1 
- -  e - ° ~ ° ' ~  d x ,  (3.1) 

where ~ is independent of x and is called the standard 
deviation. This is-the normal or Gaussian probability 
distribution. 

(B) The standard deviation of a sum of deviations 
y = (h~ e~ + ~ e~ + . . .  + ~ e~) is 

where ~ is the standard deviation of e~. 
Assuming tha t  the distribution laws of the AS"s are 

such that ,  in conjunction with the large number of 
AS"s, the qualifying phrase of theorem A ' in a large 
class of cases' is not violated, joint application of these 
theorems shows tha t  the probability distribution of 
A(Aa), for example, is normal and gives the standard 
deviation of A(Aa) in terms of the standard deviations 
of the AS"s. We shall show in the next section tha t  it is 
not permissible to take a constant standard deviation 
for AS'. The only estimate available is 

a(AS'~z) = AS" = S'o-- S'~. 

On the supposition of a large number of As"s this will 
lead to reliable estimates of w(Aa), etc. 

Hence we have 

_ _  2rr {~ A ~ h  AS'~} , (11.7) ~ ( A ~ ) = ~  ~ ~ ~ 

where ~.(Ah) is the standard deviation of A(Ah) and 

~ = [ s i n  0~ +s in ( -o~)+ . . . ] .  (11.8) 

0~ involves the co-ordinates at which g(A~) is being 
evaluated; the number of terms in the expression for 
h ~  depends on the space group and is in any case a 
multiple of 2, since invariably A F ~ z _ A s ' ~ i ,  while 
additionally we might have, e.g., A F ~ - -  A S ' ~ -  A F ~ .  
Let the number of planes related in this way be m, 
which may  be different for sets of general (hkl) planes 
than  for sets of special, e.g. hOl, planes. 

Unless (11.7) is being evaluated at  or near a special 
point such as (0, 0, 0) it is reasonable to extend the 
statistical argument by taking the R.M.S. value of 
(11"8) for any point (x, y, z). 

As the sine terms are linked in pairs this gives 

the R.M.S. value of sin 0 being l/x/2. 
We now have the general result 

the m dropping out as ~ indicates a summation over 
3 

each observed plane. 
Similarly, the R.M.S. values of the other errors are 

}, ~ ( p ) = ~  AS" ~ , (11.10) 

o'(Ah~) =-~--~ h~k~AF ~ (11-11) 

In deriving these expressions we have made no 
assumptions regarding AE, such as tha t  AS' is pro- 
portional to the plane index. We might have expressed 
AE as a function of the plane index and magnitude of S" 
by analysing the AF's  for a set of observed and cMcu- 
lated structure factors; but  the above method achieves 
the final result without the trouble of finding AS' in a 
functional form. 

With regard to those planes which were within the 
limiting reciprocal sphere of observation, but  for which 
no S"s were observed, there are two possibilities de- 
pending upon the method used for correcting for 
termination of series. I f  the semi-analytical method of 
§§ 6-8 or t h e f  syntheses of§ 9, both of which depend on 
a 'sharp cut-off', are used, then put  AS'=S'c in the 
expression above. If  the S', method of § 10 is used, then 
omit AS" for all unobserved planes. 

For orthorhombic or monoclinic cells wi th/?  nearly 
90 °, the standard deviations of a peak position are 

o'(x)=o'(Ah)/Ahh; ~(Y)=~(Ak)/Akk; ~(z)=~(Az)/Au. 

(11.12) 
For general cells Booth (1946 b) has derived equations 

for the precise location of a peak, when the series 
Aa, A~, Az, Ahk, etc., are evaluated at some nearby 
point. I f  e~, e~, e z are the peak co-ordinates relative to 
the nearby point, then 

A~h e~ + Ahke~ + Ah~ez + Ah =O,} 
Ah~ex+Ak~e~+Akze~+A~:O, (11"13) 

A hzeo~ + A kz% + Aue~ + Az = 
These equations will give the R.M.S. peak errors if we 

insert ~(A~), g(Ak), ~(Az) from (11.9) in place of 
Aa, Ak, A~. In  solving these equations, since q(Aa) , 
etc., are standard deviations, ¢(Aa) plus g(Ak) is 
{ g(A a)9. + ~(A k)~} t. 
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The solution of (11.12) for spherically symmetrical 
peaks in a monoclinic cell reduces to 

(r(x) ={(r(A h) 2 - cos 2/? (r(At)2}½ ] 
A hh sin2/? 

o'(y) = o'(A~)/Ahj~, (11.14) 

{~(A~)~-  cos ~ fl ~(Ah)~} ~ 
~(z) - Aa~ sin 2/? 

where ~(x), ~(y), o'(z) are the R.M.S. peak errors. 
We may expect, in general, tha t  

~(x) ~ ~ (y )~  ~(z). (11.15) 

I f  so, the R.M.S. radial error of position will be 

~(r) = (~/3) ~(x). (11.16) 

The standard deviation in the distance between two 
symmetrically independent atoms with the same Ahh 
will be 

~(dist) = (42) ¢(x), (11.17) 

since errors in directions at  right angles to the inter- 
atomic line do not change its length. 

I t  can be shown tha t  the error in the difference 
between the slopes at  two points is 

27r 9 
sin~ ~ )  , (11.18) 

where 30 = O~ - O n . 

If  the two points are close together, this difference in 
slope will be less than indicated by (11.17), which might 
reduce the error in the distance between two peaks, but  
this will only be if all the terms 30 in (11.18) are small, 
say less than ¼~r. With Cu K a  radiation this requires 
the peaks to be closer than 0.1 A.; consequently (11.18) 
effects no reduction in the error between two peaks and 
(11.17) stands. 

The formulae above have assumed no phase-angle 
error, and are for use with centro-symmetric structures, 
but they will underestimate the errors f fany appreciable 
number of planes have the wrong phase and they must 
be applied cautiously to 'poor '  structures. 

For non-centrosymmetric structures the phase- 
angle errors must be taken into account. Corresponding 
to (11.4) we obtain 

1 E { F t c o s ( O - a t ) - 2 , o c o s ( O - a ~ ) } ,  (11"19) 
~(P) = v 3 

where the suffix t denotes true values. 
Let a t - a o  = Aa and 2 , t -  2,0 = AF ' .  If  Aa is small, so 

tha t  cos Aa = 1 and sin Aa = Aa, then 

(P) = V ~ { A 2,' cos (0 - at) + Aa .  2,0 sin ( 0 - at)}. A 

(11.20) 

When we include the contribution of the error in the 
finite series correction to the total random error, we find 
additional contributions of the type ( F t -  F~) cos ( 0 -  at) 
and negative ones AaF~ sin (O-a t ) ,  where this Aa is 
identical with tha t  in (11.20). Hence, following the 

same arguments as above, we obtain, corresponding to 
(11.10), 1 

+ Aa~.AFg.]}. (11.21) c r ( P ) = v ( ~  [AFt _ 

% 

I f  we neglect the small contributions from the terms 
Aag.. AFg., we see tha t  the errors in non-centrosymmetric 
structures are given by th~ same formulae as for centro- 
symmetric structures. I t  was incorrectly stated 
previously (Cox & Cruickshank, 1948) tha t  a factor ~/2 
was involved. 

12. The effect o f  random errors in dibenzyl 

Taking the two-figure values of 2,o and 2,o given by 
Jeffrey (1947), applying the formula of the last section, 
and omitting A2, for all planes for which there was no 
Fo, we obtain 

~(p) = 0.125 e.A. -3, 

~(Aa) = 0.262; ¢(Ak) = 0.246; ~(Az) = 0.245 e.A. -4, 

~(Ak~) = 0.992 e.A. -5. 

Talcing the mean value of ~2p/Or2= - 3 4 . 1  obtained 
in §A1, and substituting the values in equations 
(11.14), we get 

~(x)=0.0087A.;  ¢(y)=0.0072A.;  ¢(z)=0.0079A. 
(12.1) 

These have an R.~.s. value q=0.0080A.  
Booth (1946a) has suggested tha t  the experimental 

errors could be estimated by assuming the same most 
probable experimentM error for each 2' o, obtained by 
using two sets of experimental data  to estimate A F. 
The standard deviation for all planes observed by both 
Robertson and Jeffrey is 1.12 (omitting the 200 plane); 
however, this must be divided by ~/2 since both sets of 
observations are subject to error. Substituting this in 
(11.9), again omitting AF for all unobserved planes, 
and solving as before, we get the positional standard 
deviations as 

~(x)=0.0061A.;  cr(y)=0.0058A.; a(z)=0.0060A. 
(12.2) 

These values are somewhat below those of (12.1), 
though since (12.1) is calculated from the differences 
between observed and calculated F s  we should have 
expected them to be considerably smaller. The reason 
would seem to be tha t  AF depends on the reciprocal 
radius of the plane, and tha t  the common planes of 
Robertson and Jeffrey contain a larger proportion of 
small index planes with bigger errors than the complete 
set of planes used in the three-dimensional synthesis. 

Table 1 gives the ~.M.s. values of A2, for different 
groups. This table shows clearly the variation of AF 
with plane index. Investigation did not reveal any 
simple relation between f and A2,. Within each sub- 
group of the table the distribution of the errors is 
roughly Gaussian. 

I t  is interesting to compare the errors (12.1) of the 
three-dimensional synthesis with those of the two- 
dimensional syntheses. Table 2 gives the standard 
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deviations of the  positional errors for the  two-dimen- 
sional s y n t h e s e s  and has been calculated by  the  
methods  of the last  section for the difference between 
Jeffrey 's  F o and  Fc,  tak ing  a~p/ax~=-37.0. Com- 
parison with (12.1) shows the superiori ty of the  three- 
dimensional synthesis, especially when the  possible 
lack of resolution in two dimensions is remembered.  

f >  2 
2 ~>]> 1 
1 ~>]> 0.5 

o.5~>/ 
AUy's 

Table 1. I~.M.S. values of AF 
(a) (b) (c) (d) 

1.38 2.91 2.70 2.82 
0.85 1.36 1.05 1.13 
0.95 .1.14 1.01 1.02 
- -  - -  0.80 0.80 

1.15 2.16 1.23 1.45 
(a) Difference between Robertson's and Jeffrey's experi- 

mental results omitting A_~o o = 9. 
(b) Difference between Jeffrey's observed and calculated 

results for planes common to (a), omitting AF2o~= 19. 
(c) Difference between Jeffrey's observed and calculated 

results for planes not included in (b). 
(d) Aggregate of (b) and (c). 

Table 2. Standard deviation of positional error for 
two.dimensional syntheses 

~(x) ~(y) or(z) 
(A.) (h.) (A.) 

Projection on 100 - -  0-0186 0.0170 
Projection on 010 0.0168 - -  0.0208 
Projection on 001 0.0137 0.0120 - -  

~.~.s. value q=0.0167A. 

Table 3 gives the  errors tak ing  A F  as the  difference 
between Rober tson 's  and Jeffrey 's  Fo's, divided by  ~/2, 
thus  giving the  effect of the  r andom errors of intensi ty 
estimation.  As would be expected from columns (a) and 
(b) of Table 1, these errors are appreciably smaller t han  
those of Table 2. 

We shall defer the  discussion of errors in par t icular  
bond lengths unti l  § 15. 

Table 3. Effect of random errors of intensity estimation 
~(x) (r(y) ~(z) 
(A.) (A.) (A.) 

Projection on 100 - -  0.0068 0.0068 
Projection on 010 0.0062 - -  0.0044 
Projection on 001 0.0062 0.0072 - -  

x.~.s, value ~=0.0063A. 

The results obtained in Tables 2 and 3 appear  to be 
a t  var iance with some of the  conclusions reached by  
Rober tson & Whi te  (1947) in their  investigation of the  
two-dimensional  errors in a hypothet ical  hydrocarbon 
structure.  They  concluded t h a t  the convergence of the 
Fourier  series is of much greater  importance  t han  
extreme accuracy of intensi ty  measurement .  The 
hypothet ica l  s t ructure  used had  10 a toms in well- 
resolved positions. Employing a two-dimensional pro- 
jection, syntheses were evaluated  for four cases: 

I .  Accurate  F values to 2 sin 0 = 2.0. 
I I .  Accurate  $' values to 2 sin 0 = 1.5. 

I I I .  2 sin ~ = 2.0 and random errors in the F ' s .  
IV.  2 sin 0 -  2.0 and systemat ic  errors in the F ' s .  

The average and  m a x i m u m  errors in the  a tomic 
positions were those shown in Table 4. We have  added 
the R.M.S. errors to pu t  these results on a comparable  
basis with those of Tables 2 and 3. 

Table 4. Errors in atomic positions from two- 
dimensional syntheses 

I I I  I I I  IV 
Average error (A.) 0.014 0 - 0 2 1  0.018 0-021 
Max. error (A.) 0.020 0.034 0.029 0-030 
~.M.s. error (A.) 0.015 0.0235 0.0195 0.021 

Stat is t ical ly the  component  of I I I  due to r andom 
errors only is = (0.0195 ~ -  0.015~) t = 0.0125A. Even  by  
comparison with I I ,  this is a substant ia l  source of error. 
The m a t t e r  can be fur ther  checked by  tak ing  the  
difference in the  positions of the  peaks of I I I  and I as 
the  measure  of the  r andom errors. We can also get the  
effect of the systemat ic  errors alone by  tak ing  the  
difference between the peaks of IV and I. We find 

Random errors Systematic errors 
Difference I I I - I  Difference IV-I  

Average error (A.) 0.025 0.0175 
Max. error (A.) 0.039 0.040 
R.M.S. error (A.) 0.027 0.0205 

The result for difference I I I - I  is very  surprising, as it  
suggests t h a t  the  effect of the  r andom errors alone is 
greater  t h a n  when t h e y  are combined with the  te rmina:  
tion-of-series errors. Such a result  is absurd  and  the  
explanat ion would seem to be t h a t  l0  a toms are too 
small a sample to provide stat is t ical ly reliable results.  
By  an unlikely chance there has been a tendency for the  
r andom errors to be par t ia l ly  corrected by  the  termina-  
tion-of-series errors. 

We can also calculate the  R.M.S. r andom errors by  
the formulae of the  last  section. After  sett ing 

~p/ar 2 = - 62-0, 

obtained approx imate ly  from Fig. 2 of Rober tson & 
White ' s  paper,  we find 

q(x) =0 .0144A. ,  q(z) =0 .0145A.  

T h e s e  are in termediate  between the  results of Tables 2 
and 3. 

The s t andard  deviat ion of the  two-dimensional  
radial  error is o'(r)= [o'(x)~+o'(z)9]~=O.O204A., which 
lies between the  two est imates of the  r andom errors in 
the  hypothet ical  s t ructure  a l ready obtained above. 

On the evidence from dibenzyl and from this hypo- 
thet ical  s t ructure  we might  hazard  the generalization 
t ha t  for a wide range of organic crystals with c a r e f u l  
intensi ty  est imations the  radial  s t andard  deviat ion of 
carbon peak positions due to r andom errors in two- 
dimensional projections is approx imate ly  0-020A. 

13.  C o m p u t a t i o n a l  e r r o r s  

I t  m a y  seem superfluous to emphasize the  necessity of  
not  making computa t ional  mistakes,  bu t  if  a high degree 
of accuracy is claimed for a s t ructure  it  is quite essential 
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tha t  there are no mistakes. Quite a small one may 
easily shift the peaks 0.02A., a distance which is some- 
times a major reason for the structure analysis in 
question. In  such cases proper caution would indicate 
an entirely separate check, say recalculation of the 
peak positions by differential syntheses (Booth, 1946 b). 

Computational errors due to rounding off may  occur 
at  various stages of the calculations, though they can be 
virtually eliminated by the use of suitable techniques 
(e.g. Booth, 1946b; Cox, Gross & Jeffrey, 1947a, b). The 
total  effect of the many small rounding-off errors will be 
similar to the effect of the many small experimental 
errors and will produce an error in the density or density 
slope with normal probability distribution. 

The standard deviation of the error in rounding off to 
the nearest whole number is 

1 (~-- {f +_: x2 gx}~=2~/3 . (13.1) 

Obviously the error in rounding off to the first decimal 
place is one-tenth of this. 

We shall now investigate the differences between 
using structure factors rounded off to the nearest whole 
number and those rounded off to the nearest decimal 
place. 

The rounding-off error AF is independent of the 
order or magnitude of the plane, and hence from (11.9) 
and (11.10) we have 

o'(Ah) =a-V[32fl" [Z h2w2} t. (13.3) 
Solving these for dibenzyl we get 

~(p) = 0.082 ~ e.A.-3, (13.4) 

(r(Ah) = 0.237 ~r e.A. -4. (13.5) 

For rounding off to the nearest whole number we get 

~(p) = 0.024 e.A. -3, (13.6) 

~(x) = 0.0022A. (13.7) 

For the random errors (taken as the difference 
between the two-figure Fo and Fc) we had 

~(p) =0"125e.A.-8; ~=0.0080A.  (12.1) 

If  there had been no rounding off, the random error 
¢(p) would have been 

¢(p) = [0"1252-2 x 0.0249]t =0.120 e.A. -z, 

and in any direction 

= [0"0080 ~'- 2 x 0.00222]t = 0.0074A. (13.8) 

The effect of rounding offthe F ' s  to the nearest whole 
number is apparently small, and the error would be 
quite negligible if the F ' s  were rounded off to the first 
decimal place. 

The calculation of the effect of rounding-off errors in 
using Beevers & Lipson (1936) strips to find peak posi- 
tions is rather involved and as it does not lead to any 
simple general formulae we shall not give the details of 

the analysis. I t  does, however, appear from this 
analysis tha t  the errors in the directions of the two axes 
of the plane are different because of summing over one 
index before the other. 

In  using Beevers & Lipson strips for dibenzyl, 
Jeffrey (1947) obtained x and z peak co-ordinates from 
syntheses of plane sections of the cell (his totals being 
summed over 1 before being summed over h), and y co- 
ordinates from line syntheses. The analysis of the errors 
in using the strips gave the following results: 

~(x)=0.0041A.,  ~(y)=0'0020A.,  ~(z)=0.0057A. 

(13.9) 
14. Random and systematic errors 

Our mode of analysis has treated the errors due to 
finite series as systematic and correctable; and the 
experimental and computational errors, and the errors 
in the method of correction for finite series, as random. 
The former have been estimated, using assumed 
scattering-factor curves, and the lat ter  on a basis of 
A F =  F o -  E c . We must now examine the justification 
of this procedure more closely. 

I f  there are no systematic errors in either F o or Fc, the 
correction for finite series will be exact, except for the 
errors of the conventional approximation mentioned in 
§5. So far as bond lengths are concerned, but  not 
necessarily for other details, if the series has a very large 
number of terms, this correction will be almost exactly 
right, and the random errors will be overestimated by 
taking A F  = F o - l y e .  Speaking in round terms, if the 
corrections for finite series are smaller than the standard 
deviations of the random errors, then it is likely tha t  the 
random errors are being overestimated by taking 
A F =  F o -  F c. 

Without instancing the causes, there may  be syste- 
matic errors in F o depending both on the reciprocal 
radius and the direction in reciprocal space. The effect of 
these systematic errors will be equivalent to the use of 
a set of distorted scattering factors; consequently the 
largest absolute density errors will be in regions around 
the peaks, and these errors may  be larger than would be 
estimated as random errors. If, as might happen when 
the values of fc are obtained directly from the experi- 
mental data  as for dibenzyl in § A2, fc is subject to the 
same systematic errors as fo,  then the experimental 
errors will probably be underestimated in most regions 
of the unit cell. Errors of scale are in a peculiar category; 
they do not affect the internal details of a structure, as 
Booth (1946a) has pointed out, but  in comparison with 
other structures their effect on the absolute electron 
density may  be mush larger than estimated. 

Errors in fc, relative to fo not to the true f, have a 
twofold effect: they increase the errors A F = F o - F c ,  
and they cause wrong corrections to be made for finite 
series. To some extent the one effect allows for the other 
(in fact taking the R.M.S. over the whole unit  cell they 
cancel out) but  there may be systematic build-ups in 
some regions. We must  distinguish between two types 
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of error in the fc curves, wrong values at and near the 
limiting reciprocal radius, and wrong values at other 
reciprocal radii. Both cause systematic errors in the 
densities near the centres of peaks which may be under- 
estimated if treated as random errors. The former will 
cause wrong estimation of both peak position and also of 
low-density-region corrections, which may be under- 
estimated if they are treated as random errors. 

I f  the scales of Fo and F~ are different, the random 
errors will be overestimated, since the finite-series 
correction does not depend on the scale of 2"c. Hence 
before estimating the random errors care should be 
taken to ensure that  F o and F c are on the same scale. 

One further point remains to be examined. If  we use 
the method of § 10 for correcting finite series, 2"c will 
have to be calculated for peak positions before correc- 
tion for finite series. To save labour it is undesirable to 
have to recalculate/v c from the corrected positions in 
order to substitute in AF=2"o--2" c to obtain the 
random errors. Does this procedure considerably over- 
estimate the random errors ? 

From a result obtained by Booth (1945b) it can be 
shown that  if the peaks in an electron-density map can 
be represented by the expressions (A 1.1), then 

M pg 
(14.1) 

, 

~vhere AF is the change in structure factor due to 
shifting the peaks an ~.M.s. radial distance ~r. 

We have confirmed that  the peaks in dibenzyl can be 
approximately represented by (A 1.1), and we shall 
show in the next section that  the R.~.S. radial shift of 
the peaks on correction for finite series is 

~/3 × 0.0142 = 0.0246A. 

Substituting this for 3r in (14.1), and setting V = 527 A.8, 
N--  5.44 and p = 3.35, as obtained in § A1, we find 
EA2"2 _ 344.  

For A F = $ ' o - F c ,  as in § 12, we find ZAF2=4316. 
Thus there would be no substantial reduction for 
dibenzyl in the values of A2" = 2' o -  2"¢ by recalculating 
the 2"o's for the positions obtained after the correction 
for finite series, and by examining the values of the 
AF's in (14.1) we can confirm that  there will be no sub- 
stantial reduction in summations like Zh~A2" ~ which are 
used to calculate standard deviations of peak positions 
due to random errors. The reason is that  the A2"s due to 
a slight change of peak position are systematic not 
random, and their magnitudes are correspondingly 
s m a l l .  

We shall assume that  this result'is true generally. 
We may summarize these remarks as follows: 

, When correction has been made for finite series 
(i) the errors in the density near the centres of peaks are 
li~ely to be larger ~han would be estimated as random 
errors, especially ff in making corrections for finite 
series bad fc values are used; (ii) the estimate of the 
errors in peak positions and regions of low electron 
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density will be substantially correct if treated as 
random with values given by the formulae of §§ 11 and 
13, except that  they may be underestimated ff the fc 
values at and near the limiting reciprocal radius used in 
making corrections for finite series are in poor agree- 
ment with the re, or alternatively they may be over- 
estimated if there is good agreement between the fo and 
fc values and ff there is a very large number of terms in 
the series. 

I t  is hoped that  the rather general remarks above 
indicate some of the limitations of the present methods 
and some of the difficulties that  must be overcome ff 
better estimates are required, but also that  the present 
methods, ff applied with due caution, are satisfactory 
for many purposes. 

15. Detailed analysis of  the accuracy of  the 
dibenzyl structure 

As there is no sharp cut-off in Jeffrey's Fo'S in dibenzyl, 
the effect of finite series can be estimated only by the 
use of F c syntheses, as described m § 10. The peak 
positions were found, using differential syntheses 
(Booth, 1946 b), the whole set of calculations being per- 
formed by punched-card methods which are being 
described elsewhere. This enabled every stage of the 
calculation to be made at three-figure accuracy or 
better. Consequently, rounding-off errors should be 
negligible. The opportunity was also taken to recalcu- 
late the peaks of the experimental synthesis starting 
from three-figure structure factors. The same planes 
were used in both the 2"0 and F c syntheses. No direct 
comparison is possible between these results and those 
obtained by Jeffrey, to estimate the rounding-off errors 
in the latter, as a small number of mistakes in the 
original list of structure factors were found and were 
corrected in these calculations. 

The new peak positions and central electron densities 
found for the experimental synthesis are shown in 
Table 5, and the corresponding bond lengths in Table 6. 

Table 5. Peak positions and central electron densities 
from experimental syntheses of dibenzyl 

Co-ordinates as fract ions of  the  cell sides 

A t o m  x y z p(0) o.A. -s 

C 1 0.0266 0.0959 -- 0.0267 5.75 
Ca 0" 1458 0" 1534 0.1200 6.73 
C s 0.1654 0.3348 0.2332 5.94 
C 4 0.2785 0.3911 0.3658 5.48 
C 5 0.3703 0.2584 0.3860 5-73 
Ca 0.3513 0.0787 0.2764 5.99 
C~ 0.2412 0-0256 0-1468 6.48 

Table 6. Bond lengths from co.ordinates of Table 5 
(A.) (A.) 

Of-Of 1"501 04-0 s 1"376 
C1-C ~ 1"486 C5-C~ 1"342 
C~-Cs 1"366 Ce-C7 1"360 
Ca-C 4 1-398 C,-C 2 1-385 

Angle C~C1C ~ 114 ° 23' Mean side 1.371 
of  ring 
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After correcting for finite series by $'~ syntheses the 
peak positions and central densities are those given in 
Table 7. The corrected central densities were obtained 
by subtracting the difference between the density given 
by the F¢ synthesis and the mean calculated density 
(6.25 e.A.-a). 

Table 7 .  Peak positions and central electron densities 
after correction for finite series by Fc syntheses 

A t o m  x y z p(0) e.A. -3 

C 1 0.0249 0.0970 -- 0.0298 6.04 
C2 0" 1472 0.1542 0.1213 6.24 
C3 0"1661 0"3378 0"2337 6"10 
Ca 0"2782 0"3933 0'3656 5"60 
C 5 0"3706 0"2631 0"3859 5"89 
Ce 0"3531 0"0790 0"2763 5"97 
C~ 0"2399 0"0229 0" 1458 6"23 

The bond lengths after correction 
Table 8. 

are given in 

Table 8. Bond lengths after correction 
(A.) (h.) 

C1-C1 1"510 C4-C5 1"376 
C r C  2 1-523 C5-C~ 1"366 
C~.-C3 1"374 Ce-C7 1"394 
Ca-Ca 1"385 C7-C2 1"374 

Angle C~C1C ~ 112 ° 4' Mean side 1.378 
of  ring 

The general effect of the corrections for finite series 
follows the results suggested by § 7, viz. tha t  the size of 
the ring and the central bonds are increased. However, 
there are as well various irregular corrections, which 
must be due to the irregular manner of 'cut-off '  of 
observations; these are certainly not negligible. The 
R.M.S. peak corrections in the various directions are 

x, 0.0160A.; y, 0.0104A~; z, 0.0154A.; 

which have an R.M.S. value 0"0142 A. 
As the scattering factors used in the Fc synthesis were 

obtained from the experimental results (see §A2), we 
shall be justified in regarding the co-ordinates and bond 
lengths of Tables 7 and 8 as final, and as having random 
errors given by (13.8). We shall now investigate the 
significance of some aspects of these results. 

The chief interests of Jeffrey's results were the 
shortened central bonds C~-C1 and C1-C2. The correc- 
tion for finite series has increased these lengths, but  they 
remain shorter than the C-C single bond length of 
1.5445A. in diamond (Lonsdale, 1947) which has an 
error negligible for our purposes. We can test for the 
significance of the differences. 

The difference, 3, between C~-C 1 and the C-C 
diamond single bond is 1.5445-1.5100 =0.0345A. By 
(13.8) the standard deviation of position in any direc- 
tion is 0.0074A. Since the errors in the positions of C~ 
and C~ must be the same by symmetry,  the standard 
deviation of t he  bond length is 2 ×0.0074=0.0148A. 
Hence 

3/¢ = 0.0345/0.0148 = 2.33. 

This is in the significance zone defined in § 3; the 
actual probability P of C~-C1, if a true single bond of 
1.5445A., being observed as 1.510A. or less, due to 
experimental error, is 0.00990. 

The difference 3 between C1-C9 and the diamond 
C-C bond is 0.0215A. The standard deviation of the 
length C1-C 2 is ~/2 × 0.0074=0.0105A., since C1 and C2 
are independent. In  this case 

3 / ¢ =  0.0215/0.0105 = 2.05, 

and is in the zone of possible significance. The actual 
probability P of such a difference happening by chance 
when the bond is really single is 0.0202. 

The simple analysis above has treated the central 
bond lengths as independent, whereas in fact they have 
a common error at C 1 . An interesting point is tha t  the 
distance from C2 to the origin (1.9379A.) is very close to 
the distance C~ would be from the origin (1.9438A.) if 
C[-C1 and C1-C~ were both single bonds with the 
normal tetrahedral  angle C~C1C9 of 109o28 '. This 
indicates tha t  the crux of the mat ter  is the displace- 
ment of C1 from the position to be expected in a single- 
bond system. This we can calculate to be 0.0279A., the 
situation being as shown in Fig. 8 (see p. 70). (For con- 
venience in calculation we have reduced the 'single 
distance bond'  from C~ to the origin to 1.9379 A.; this has 
reduced the apparent displacement slightly.) We have 
n o w  

3/¢=0.0279/42 × 0.0074= 2.66. 

By § 3 C~ is significantly displaced from the position 
to be anticipated in a single-bond system, the actual 
probability P of such a result or greater being ob- 
served in a true single-bond system being 0.00391. 
From these considerations we confirm Jeffrey's con- 
clusions tha t  the central bonds C~-C 1 and C1-C~ in 
dibenzyl are significantly shorter than the C-C single 
bonds in diamond, '  significantly' here being understood 
to possess the quanti tat ive meaning defined in § 3. 

A direct (though slightly involved) analysis of the 
errors in the angle C~ C1 C~ shows tha t  there is a very 
significant difference between it and the normal tetra- 
hedral angle, with P = 0.00024. 

In  his paper Jeffrey suggested that  the bonds Ca-C a 
and C~-C 7 might be longer than the other four bonds of 
the ring. I t  is apparent tha t  there is nothing in the bond 
lengths of Table 8 to disprove symmetry  of the ring 
about the line C2-C 5. We can thus average the bond 
lengths about this line obtaining 

average of C~-Ca and C7-C~ = 1.3740A. = l~, (say), 

. average of Ca-C a and C~-C~ = 1.3895A. = 12 , 

average of Ca-C 5 and C5-C 6 = 1.3710A. = I a . 

We shall now test  successively for the differences of 
11 and 1 a from l~. Unfortunately,  the standard deviation 
¢ included in the ratio 3/¢ is not obtained as simply as 
in the cases above, as the errors in 11 and l~., and 12 and la, 
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all of which are means, are not independent. We can 
show tha t  the error e, R.M. squared for all directions of 
the component errors, in the difference l ~ - 4  is 

e = ½ca + Q sin (½~) + ea cos ½~ + Q sin ½~ + ½eT, 

where ~ = 120°.. Whence, taking the R.M.S. and putt ing 
¢a = ~4 = ~a = ~a = ~7 = 0.0074A., we have 

¢ =  ~/(9/4) × 0.0074=0.0111A. 

Hence (19- 4)/~ = 0.0185/0.0111 = 1.666, 

which is in the zone of possible significance, P = 0.0478. 
Similarly, 

(4- li)/¢r = 0.0155/0.0111 = 1.40, 

giving P = 0.0808. 
We conclude that  the evidence in favour of the 

differences in the bond lengths l~ from 1 i and 18 is not 
very definite; further evidence would be required to 
establish any differences with confidence. 

The mean ring size is 1.378 A., for which the standard 
deviation is 0.0074/~/6=0.0030A. However, this 
estimate of the standard deviation takes no account of 
systematic errors of the type referred to in § 14, which, 
while t h e y  might safely be included in the standard 
error ~/2x0.0074A. of a single-bond length, may 
render 0.0030A. an underestimate of the error in the 
mean ring size. Nevertheless, there would seem to be 
strong evidence tha t  the ring in dibenzyl is smaller than 
1.39A., the usually accepted value for the benzene ring 
(Brockway & Pauling, 1934). 

The values of the central peak densities given in 
Table 5 from the experimental synthesis show great 
variation from C4 with density 5.48 e.A. -3 to C~ with 
density 6.73 e.A. -a. The correction for finite series in 
Table 7 reduces this difference considerably to C 4 
density 5.60e.A. -8 and C~ density 6.24e.A. -a. C4 is 
actually much lower than any other peak, the next 
lowest is Cs=5.89e.A. -8, its counterpart across the 
central line C~.-C6, Ca, having a density 5.97 e.A. -3. 
By (13.8) the standard deviation of the density is 
0.120e.A. -3. The discrepancy of C4-Ca=0"37e.A. -3 is 
large, and could be interpreted as an instance of the 
errors at the peak centres being greater than estimated 
by the formulae of § 11. 

We can test the difference between the mean density 
of C i,  C2, C a and of C4, Ca, Ca. This difference is 
0.370 e.A. -~, and the standard deviation of the differ- 
ence is 0-120 x ~/(2/3) = 0.098 e.A. -8. 

~/~ =0.370/0'098 =3"77, 

which by § 3 is very significant, though, in view of the 
remarks above on the difficulties mentioned in § 14, the 

argument is less certain. However, there seems some 
evidence for greater central densities in the ring peaks 
nearer the centre of the molecule than at  the ends. Their 
interpretation, especially after the discussion of bond 
lengths above, is problematic though they might be 
taken as indicating tha t  the thermal vibration of the 
molecule includes a component of angular motion about 
the molecular centre of symmetry.  

16. V a r i a t i o n  o f  r e c i p r o c a l  radii, etc. 

In the preceeding sections very little at tention has been 
given to the variation of errors with different reciprocal 
radii or to the relative errors in different experimental 
procedures or modes of structure determination. 
Without exploring this subject of the 'economics' of 
structure analysis, much of which would have to be 
tackled from a rather different view-point from the 
present, some results follow quickly from the previous 
data. 

We can make some estimation of the variation of 
errors with limiting reciprocal radii for dibenzyl. The 
problem is complicated by the irregular cessation of 
observations in the reciprocal sphere, and consequently 
the estimated equivalent reciprocal radii of sharp cut- 
off are different for random and termination-of-series 
errors. The results below are based on the following 
assumptions : 

Equivalent reciprocal radius of cut-off for the 
structure (obtained from Jeffrey's observations): 
2s in00=l .65 ;  termination-of-series error for this 
structure in any direction: 0.0142A. (§15); random 
error: 0.0080A. (12.1); random errors of AF in the 
range 2 sin 00 = 1 . 2 -  2.0 (assumed constant): 0-80 
(Table 1 d) mul t ip l iedby a factor to allow for difference 
of equivalent reciprocal radii; ~p/ar~: the values ob- 
tained from integration of the scattering factor given by 
Table A2 and extrapolated by (A3.3). 

I t  is difficult to estimate accurately the termination- 
of-series effect for different reciprocal radii, but we can 
set upper and lower limits to its magnitude. We may 
assume either the disturbing ripple to be constant, in 
which case the error is inversely proportional to 
a"p/ar 9 for the peak being shifted, or, by  using (6.6) for 
a given configuration of atoms, p'B(r) is proportional to 
fos~ and the error is proportional to foS~o/(a'p/arg). The 
true error lies somewhere between these extremes. 

Table 9 shows a steady reduction of the termination- 
of-series error within the range considered, while the 
random error decreases very slowly to a minimum a t  
2sin00=1.8.  The increase beyond 1.8 is due to the 
assumed errors being of the same magnitude as the F's .  

Table 9. Variation of  errors in  dibenzyl with l imit ing reciprocal radii 

2 sin 00 1.2 1.4 1.6 1.65 1.8 
Random error (A.) 0.0106 0.0089 0.0081 0.0080 0.0079 

Termination-of-series error estimated as: 
oc 1/(~.p/ar ~) 0-0321 0.0211 0.0152 0.0142 0.0119 
oc foS~o/(O~p/Or 2) 0.0476 0.0272 0.0158 0.0142 0.0097 

2.0 
0.0081 

0"0098 
0"0056 
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We infer, since the f values in dibenzyl are so small at 
large ~, tha t  in general the random error will be reduced 
if the reciprocal radius is extended to the limit of 
observation. 

By comparison the errors in any direction in Robert- 
son & White's (1947) two-dimensional hypothetical 
structure are 

2 sin 0o:1.5 2 sin 0o=2.0 
(A.) (A.) 

~.M.s. random error 0.0205 0.0144 
R.M.S. termination error 0.0166 0.0105 

Both errors are less at  the larger 0. 
Booth (1947 b) has recently suggested tha t  structures 

may be determined by minimizing the quant i ty  
R~ = Z(Fo 2 -  F~)", or by other least-squares procedures. 
Assuming accurate computation, and tha t  there are no 
systematic misrepresentations of the electron density 
by these methods, we can compute the random errors of 
their results. (They automatically correct for finite 
series.) The R.~.S. difference between the densities of the 
observed and calculated structures will be given by the 
formulae of §11 with A F =  F o -  F c. To get the error 
between the true and calculated structures an allowance 
must be made for the experimental errors in Fo. These 
are unlikely to exceed (F o -  Fc)N2. Hence the total  

'error of the calculated structure will be given by the 
formulae of § 11 with AF lying between ( F o -  .F~) and 
(1 +½)t (F o_ Fc)= 1.225(Fo-  Fc). 

Assuming the agreement between sets of observed 
and calculated F ' s  is not substantially better than for 
sets derived from .the Fourier process (as seems likely 
from the results on dibenzyl quoted at the end of § 14) 
the errors in results obtained from minimization pro- 
cesses are likely to be about the same or slightly greater 
than those obtained by the normal Fourier methods 
with correction for finite series. 

17. Summary 
In at tempting to achieve our aim of producing a re- 
liable and workable set of rules for assessing the 
accuracy of structures, a number of incidental results 
have been obtained either in reaching the rules or as 
examples of their application. 

The peaks of dibenzyl can be approximately repre- 
sented by the exponential density distribution sug- 
gested by Booth, but  the peaks formed from an infinite 
series cannot be so represented and consequently 
analyses based on scattering factors which give such 
peaks are inaccurate (Appendix). 

The standard deviations of the random errors in any 
direction in the dibenzyl peak positions found from 
two-figure I F  I values are 0.0080A. for three-dimefi- 
sional syntheses, and 0.0167A. for two-dimensional 
syntheses. 

The two-dimensional errors are thus approximately 
twice the three-dimensional errors, and, with a re- 
examination of the results from Robertson & White's 

hypothetical structure, suggest tha t  two-dimensional 
random errors of this magnitude may be typical of a 
large class of organic compounds (§ 12). 

The computational rounding- off errors, using B eevers 
& Lipson strips to find the dibenzyl peaks either in a 
three-dimensional section or in a plane projection, have 
a standard deviation in any direction of approximately 
0.005A. (§ 13). 

Application of corrections for finite series in dibenzyl 
increases both the length of the central bonds and the 
size of the benzene ring, and reduces the variation in 
peak central densities. Par t  of the correction is due to 
spherical diffraction effects and part  to effects caused by 
the irregular manner of cessation of observed reflexions. 
The R.M.S. value of the peak correction in any direction 
is 0.0142 A. 

After correction for finite series, the central C-C 
bonds in dibenzyl are shown to be significantly shorter 
than the C-C bond in diamond (§ 15). 

The random errors in non-centrosymmetric structures 
are given by the same formulae as for centrosymmetric 
structures. 

Rules for assessing the accuracy of electron.density maps 

(1) Correct the errors due to finite series. If  there is 
no sharp limiting reciprocal radius, this must be done 
by 2' c syntheses (§ 10). I f  there is a definite limiting 
reciprocal radius, much trouble can be saved by using 
the semi-analytical method (§§ 6-8), or the f~ synthesis 
(§9). 

(2) Estimate the standard deviation of any com- 
putational rounding-off errors (§ 13). 

(3) Estimate on a basis of A F  = F o -  Fc the standard 
deviation of the experimental and finite-series correc- 
tion errors (§ 11). 

(4) Except in certain respects mentioned in § 14 the 
errors of the electron-density maps corrected by (1) are 
the statistical sum of the errors (2) and (3), and have a 
Gaussian probability distribution. 

(5) All comparisons, either between results obtained 
in different parts of the same electron-density map or 
between results in different maps, made in trying to 
establish differences or similarities must involve the 
use of significance tests (§3). In expressing the con- 
clusions of such comparisons, words such as 'significant'  
should be used with a defined quanti tat ive meaning. 

I t  is a great pleasure to express my thanks to Prof. 
E. G. Cox for much helpful criticism and for his con- 
tinuous interest in this work; to Dr G. A. Jeffrey for 
access to his original data on dibenzyl and for many use- 
ful discussions; to Mr L. Gross for his help in devising 
and carrying out the punched-card methods to com- 
pute the dibenzyl differential syntheses; to Mr R. M. 
Gabriel for several enlightening discussions on Fourier 
transforms; to Dr B. L. Welch, and to Mr A. P. 
Robertson for discussions on statistical matters.  
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A P P E N D I X  

A 1. The peak shapes in dibenzyl 

Costain (1941) and Booth (1946a) have suggested 
tha t  the electron-density distributions of the peaks 
obtained in Fourier syntheses may be closely repre- 
sented by expressions of the type 

p(r)=Ae -~2. (AI.1) 

By examination of the peaks for carbon, nitrogen and 
oxygen in pentaerythritol  te trani trate  (Booth & 
Llewellyn, 1947), chlorine in geranylamine hydro- 
chloride (Jeffrey, 1945) and sulphur in/?-isoprene sul- 
phone (Cox &Jeffrey, 1942), Booth obtained a value of 
p =4.69. This value gave a close approximation to the 
electron densities around the centres of the peaks in 
these different compounds. 

e.A.-3 
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Fig. A1. Dibenzyl. Broken line, envelope of p(r) for ring 
atoms in directions away from C-C bonds. Full line, 
6 - 3 . 3 5 r 2  

By normalizing to include the correct number of 
electrons in the peak (A 1.1) becomes 

p(r)=N(p/Tr)g e - ~  , (A 1.2) 

where h r is the atomic number. 
At the centre of the peak 

(a2p/~rg)~=o = - 2phr(p/Tr) ~. (A 1.3) 

The applicability of this representation has been 
tested for the carbon atoms in dibenzyl as follows: 

(a) Fig. A 1 shows the variation ofp(r) with r for the 
atoms of the ring, the density values having been taken 
from the Fourier syntheses along directions not lying in 
the C-C bonds and scaled down to reduce all central 
densities (r = 0) to unity. The dotted curves envelop the 
experimental densities, and the full curve represents 
Ae-~" with A =1  and p=3 .35 ,  p(r)=e -a.85~ gives a 
good approximation to the reduced density, except for 
values of r >  0.9A. where it  is smaller than the experi- 
mental density. 

(b) Table A 1 has been calculated from the results of 
Jeffrey's syntheses, and shows the mean central electron 
density, central 10 value, and central curvature for the 
peaks. The 1o values were calculated by using a three- 
point parabola method at  the centre; they thus exactly 
represent the densities at  r - O ,  whereas 10 =3.35 gives 

the best fit for 0 < r < 0.9. The curvature was obtained 
by substitution in (A 1.3). As the map density for atom 
C z was rather different from those of the ring atoms, and 
as it is the only atom of the seven with two hydrogen 
atoms attached, we have averaged the six ring atoms 
separately, and used these values in the following 
discussion. 

Table A 1. Details of the dibenzyl p e a ~  

Electron 
density 
(o.A. -3) Mean p ~p/Or ~ 

Mean for all atoms 5.93 2-87 --34.1 
Mean without Cz 6.00 2.86 -34.5 

I f  an equation of type (A 1.1) is to be valid, i t  must  
represent the results of Table A 1 as well as those of 
Fig. A 1, and consequently with p = 3.35 (from Fig. A 1) 
we must put  A = 6"00 in order to give the correct peak 
height from Table A 1. This leads to (A 1.2 and A 1.3) 

N =  5.44, and (~p/Dr~)r=o= - 40.2. 

We thus see that  the use of (AI-1), adjusted to give 
the observed peak density, gives too high a curvature at  
the centre and too low a value of the total  electron 
content of the peak. (N should be 7 for CH or 6 for C.) 
This accords with the observation from ~ig. A 1 tha t  
p = 3 . 3 5  gives low densities at  r>0 .9A.  On the other 
hand, if we put  A = 6.00 and use the observed mean 
p = 2.86 from Table A 1 we find h r = 6-87 and we get poor 
agreement with observed densities in the region of 
r=0 .6A .  

A2. Scattering=factor curve for CH in dibenzyl 

Each molecule of dibenzyl has 14 carbon atoms and 
14 hydrogen atoms, and, except for C1 and C~ (each of 
which has two) and C~ and C~ (none), each carbon is 
bound to one hydrogen. We assume, therefore, tha t  
without serious error we can deduce a scattering-factor 
curve for CH from the average results for the whole 
dibenzyl molecule. CH scattering factors were ob- 
tained by dividing the observed structure factors 
(expressed to a tenth of a unit) by the calculated geo- 
metrical form factors, i.e. by means of the relation 

/ =  Fobs. cos 0~. 

The errors in the atomic positions discussed elsewhere 
in this paper are too small to affect the accuracy of this 
procedure appreciably. The f values were then plotted 
against 2 sin0 and a mean f curve was constructed 
(Fig. A 2). The spread of the points about the mean is 
not shown but may be inferred by recal|ing (Jeffrey, 
1947) tha t  

" z I I I - I   ca,c. I I 0.15. 
ZlFob ,l 

Now ff p(r) = N(p/n)~ e - ~ ,  • (A 1.2) 

then f(s) = Ne -'~821~ (A 2.1) 

(e.g. Booth, 1946a, equation (6.12)). 
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/ Hence we can calculate the scattering-factor curve 
/i for a density of the type (A1.2) with N=5 .44  and / r (A.) 

p=3"35, as obtained in the last section from the o 
synthesis peaks. For comparison this also is shown in o. 154 

Fig. A2. The transforms of both these curves, the o.3o8 
0.462 

former terminated at the limiting reciprocal radius of 0"616 

experiment and the latter extended to infinity, both 0.770 

approximately fit the observed density distribution. 
Their differences indicate that  the real electron density 
is somewhat different from that  in the map peaks, and 
that  the use of a scattering factor of the type (A 2.1) is 
unsatisfactory for dibenzyl. 

Table A 2. The averaged ' real' CH ' group' 

p(r) (e.A. -3) 

7-23 
6.46 
4.65 
2.81 
1.54 
0.83 

r (A.) p(r) (e.A. -3) 

0.924 0.467 
1.078 0.270 
1.232 0.150 
1.386 0.079 
1.540 0-0396 
1.694 0.0185 

(~2p/~r2)r=o ---- -- 80"2. 
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The peak of the ' real '  p(r) is both denser and sharper 
than those in the maps, the cause of the difference being 
the fmiteness of the series which generated the map. 

7-  

6- 

5- 

f 4 -  

3- 

2- 

1- 

0 i i | , , i 
0'.2 d4 0'.6 ~8 vo 1.2 ~.4 ~-6 ~.8 

2 s~n 0 (~= 1.54 A.) 

Fig .  A 2. Fu l l  l ine, CH f cu rve  for  d ibenzyl .  B r o k e n  line, 
f =  5.44 e-~ 2s2/~, p ---- 3.35. 

A 3. The shape of the 'real' density distributions 
Van Reijen (1942) has shown how charge distributions 
without diffraction (termination-of-series) effects may 
be calculated by smoothly extrapolating the f curve. 
We shall assume that  extrapolation does remove the 
diffraction effects, although a smooth fit is not a suffi- 
cient condition mathematically. Assuming spherical 
symmetry p(r)= f /  4ssgf(s)sin2nsr2nsr ds. (A3.1) 

This may be written 

p(r)= f:°4ns~fo(S) sin2nsr - 
2nsr ds 

+~:°47TS2fs(s)J.s sin27rsr _ 
o 2nsr ds, (A3-2) 

where s o is the limiting reciprocal radius of experiment, 
re(s) the observed scattering-factor function, and 
f (s) the extrapolated scattering-factor function. 

We usefo(s) from Fig. A 1 to the limit 2 sin 0 = 1.7 and 
then a suitable extrapolated f curve. Such a curve is 

f(s) = 2.26 e -~%~/5"~5 . (A3.3) 

Hence, ff we perform the integration of (A 3.2), we get 
a value ofp(r) for dibenzyl without any termination-of- 
series effect. This will be a spherically averaged p(r), 
since by taking a single f(s) curve we cannot allow for 
the directional effects of the bonds. Fig. A 3 shows this 
' real '  p(r) and compares it with the density, shown in 
Fig. A 1, obtained from the terminated synthesis. The 
numerical values of the ' real' p(r) are given in Table A 2. 

A c d  

e.A.-]  

p (r) 

x 

2 ""~" 

0'1 0"2 0'3 0"4 0-5 0'6 0"7 0'8 0-9 1"0 1"1 1"2A.  
r 

Fig.  A 3. Fu l l  l ine, p(r) b y  i n t e g r a t i n g  e x t r a p o l a t e d  f curve .  
B r o k e n  line, p(r) f r o m  syn thes i s .  

The '  real' peak cannot be represented by an expression 
of the type (A 1.1). This was to be expected, since no 
atom whose electron density is not of the Gaussian form 
without heat motion, can attain a Gaussian form with 
any reasonable form of thermal motion. The fact that  
some map peaks may be represented approximately by 
this form is, in part, a consequence of the finite series. 

The value N=2.26  obtained for the extrapolated 
f curve (A3.3) suggests that  the principal contributors 
to the f curve at the limiting reciprocal radius are the 
two non-bonding electrons in each carbon atom. If  this 
were the case, one would expect that  the central portion 
of the ' real '  atom would rise head and shoulders above 
the outer regions. Such an effect may be seen in the line 
section of the proj ected charge distribution in diamond 
on a (110) plane, with the diffraction effects eliminated 
by using an extrapolating f curve, given in Fig. 8 of 
Van Reijen's paper. In that  case a sharp peak, of 
approximate integrated velum6:' t~o electrons, rises 
above the density in the outer regions. However, 
examination of Fig. A3 shows no such 'super peak',  
and the value N = 2.26 is withoutspecial significance. 
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The Experimental Determination of the Soundness of Crystals from X-ray 
and Density Measurements* 

BY M. E. S T R A ~ I S  

DeTartment of Metallurgy, University of Missouri, School of Mines, Rolla, Mo., U.S.A. 

(Received 9 August 1948 and in revi~ed form 7 December 1948) 

A method is described" which makes possible the detection of imperfections in crystals of elements, 
compounds and solid solutions by the determination of molecular weights from X-ray and density 
measurements. Precision determinations of density and lattice constants are necessary for the 
calculations. 

It  is shown that the elements Ag, Cu, Fe, Pb, Te and the compounds LiF, Pb(l~Oa)~. and. calcite 
may be considered as having a normal structure, as the number of imperfect sites found does not 
exceed the possible error of determination of these imperfections. A normal structure is also shown 
by the tetragonal mixed crystals of the general formula (Zn, Cd, Co) [Hg(CNS)4 ] and by the ~ phase 
in solid solutions of the Ag-Zn system. 

The problem 

To determine whether a crystal is sound or whether it 
has vacant sites or interstitial atoms it is necessary to 
know the lattice constants and the density with high 
precision. I t  is well known from the publications of 
Barrett, Bunn, Buerger, Foote & Jette, Hume-Rothery, 
Laves, 0wen and others how to distinguish the different 
types of imperfections in crystals. The method de- 
veloped, however, is not unambiguous, e.g. concerning 
Avogadro's number, for which different values have 
been used by different investigators. A modification of 
the method which avoids such pitfalls may be proposed 
as follows. 

The method 

The idea of this method is to use the molecular (or 
atomic) weights determined by means of X-rays (Mx) 

* Presented to the First Congress of the International Union 
of Crystallography at Harvard University, Cambridge, l~Iassa- 
chusetts, in July 1948 under the title, 'Some Further Examples 
of Ideal Structure of Crystals'. 

and to compare them with the chemical data (M). The 
M x can be calculated by the formula 

Mx=lc  Nsvd/n, (1) 

where v is the volume of the unit cell in kX 3, d is the 
density, and n is the number of molecules per unit cell. 
The difference between this formula and other similar 
ones (for example, the one for the determination of 
density by X-rays) lies in two respects: (1) N 8 represents 
the Avogadro number used by Siegbahn in his wave- 
length determinations (Ns=6.0594×102a), and (2) 
k-1.0002 is a factor representing the raising of the 
molecular weight of calcite from 100.075, as used in the 
time of Siegbahn's X-ray wave-leng~h determinations, 
to 100.095, the most recent figure including the effect of 
mixed-crystal formation. The reason why Siegbahn's 
Avogadro number and the factor /c must be used is 
shown in an article due to appear in the Zeitschrifl fiir 
Physik. I f  it is desirable to use ~mgstr6m units, the 
Siegbahn Avogadro number must be replaced by 


